

"New Design Paradigms" workshop 2001

Advanced applications of the ESA Concurrent Design Facility (CDF)

presented by

Massimo Bandecchi
ESA/ESTEC - TOS-P
Franco Ongaro
ESA/HQ- SER-A

Space Mission Feasibility

CDF: the objectives

- The <u>Concurrent Design Facility</u> was established at ESTEC in Nov. 1998, on experimental basis, with the scope to provide:
 - a mission design environment for the conceptual design of new space missions (currently applied to internal pre-phase A / level 0 assessment studies)
 - a set up for the application of concurrent engineering principles
 - a more effective organisation of existing mission analysis and design tools and human resources
 - a generic approach to capture corporate knowledge for further reuse

CDF: approach

 Re-organization of existing tools and human resources in a more effective (i.e. "concurrent") way

CDF: integrated design model

The ESTEC CDF: layout

CDF: studies performed (Jan.'99 to date)

- CESAR99
- Solar Orbiter
- Meteo Imager Sounder Satellite MISS
- World Space Observatory WSO/UV
- Mercury Surface Element MeSE
- Eddington
- MASTER
- STORMS
- Hyper
- Ocean Earth Watch

CDF: the present...

 The ESTEC CDF has become a functioning, operational and accepted component of the ESA in-house mission design assessment process

... and the future

- Other possible applications of the method and facility in the ESA context:
 - support reviews,
 - system requirements definition,
 - proposal evaluation,
 - instrument conceptual design,
 - training,
 - _ ...

The ESA context

Phase A Industrial Study reviews

- LISA: Laser Interferometer Space Antenna
- STEP: Satellite for the Test of the Equivalence Principle
- decision to run these reviews in CDF was taken
 "a- posteriori" (1)
- review in 2 steps:
 - internal review model based (2)
 - involvement of industrial team (either locally or remotely)
- (1) Model input interface specification will facilitate the review activity (foreseen for BepiColombo)
- (2) allowed: a) the implicit verification of the model consistency,
 - b) the verification of alternative design options

Support Industrial Phase A for ISS facilities

Dusty Plasma (ICAPS):

- Collaborative management and distributed support
- Scientific Requirements Definition took place in CDF on June 14-15

Achievements:

- improved communication and understanding between scientific and engineering teams
- simultaneous definition and agreement by all parties

2 more ISS facilities (Phase A/B) foreseen in 2001

ESTEC CDF / JPL Team X STEP joint design results

STEP a multi-national project where the payload is provided by Stanford and the service module by ESA

Joint sessions analysed:

- Design baseline
- Critical issues
- Interfaces

Joint sessions produced mutually agreed:

- Conceptual design iteration and finalisation
- •ICD
- System requirements

ESTEC CDF / JPL Team X STEP joint design sessions

CDF: other applications

Phase B, C/D

- Project review of more advanced phases
- Structuring and better organisation of the reviews
- Ideally: standardised documentation
- above all: standardised data exchanged

CDF: other applications (1/2)

Model the "Unconventional"

- R&D activity
- Verification of new technologies at mission/system level
- System evaluation of advantages/disadvantages of certain technology programmes
- Verify before recommanding to Industry

Distributed Concurrent Development

 need for a more performant infrastructure, quality step-up:

- what's beyond Excel?
- which role is GRID going to play?

CDF: other applications (2/2)

CDF for Education:

- recent requests and initiatives by some university aerospace departments to use the CDF (or CDF-type environment) as an educational tool
- first experience (experimental phase)
- ⇒ Education is an important objective but is not the primary reason to have built the facility
- ⇒ might give the opportunity to check the portability of the facility

CDF and education: the **SSETI** experience

- SSETI (Student Space Exploration & Technology Initiative): a network of students, educational institutions and organisations using Internet to perform distributed design and possibly construction and launch of (micro)satellites
- SSETI counts more than 400 participants from 77 European universities
- design data structure, models and exchange mechanisms similar to those used by CDF!!
- Moon mission microsatellite phase A study review using the CDF performed by ESA specialists jointly with the students
- technical sessions/lecture held in the CDF from 1 4 May
 2001

The SSETI Workshop (2/2): quotes

- Lusastro Team (AOCS & ground station), Lisboa, Portugal:
 - "... One of the best things, appeared to be the allowance to use the CDF (concurrent design facility), were we learned how to design and implement things in a co-ordinated way."
- Thermal team, Manchester, United Kingdom
 - "... The use of the Concurrent Design Facility showed that we were producing good work, and that such projects can be undertaken in a distributed way."